Home
Class 10
MATHS
(19*2x^(2+ax-a^(2))15)/(2^(1*)(16)/(x)-1...

(19*2x^(2+ax-a^(2))15)/(2^(1*)(16)/(x)-1-(15)/(x+1),x*0,-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:(16)/(x)-1=(15)/(x+1),x!=0,-1

Show that (16(32^(x))-2^(3x-2)*4^(x+1))/(15*2^(x-1)*16^(x))-(5*5^(x-1))/(sqrt(5^(2x))) is given

The coefficient of x^(15) in the product of (1-x)(1-2x)(1-2^(2)x)(1-2^(3)x)(1-2^(4)x)......(1-2^(15)x)

The value of lim_(xrarr0^(-))(4^((3)/(x))+15(2^((1)/(x))))/(2^(1+(6)/(x))+6(2^((1)/(x)))) is equal to

The value of lim_(xrarr0^(-))(4^((3)/(x))+15(2^((1)/(x))))/(2^(1+(6)/(x))+6(2^((1)/(x)))) is equal to

Solve for x : (16)/x-1=(15)/(x+1),\ \ x!=0,\ -1

Solve (2^(x)+2^(-x))/(2^(x)-2^(-x))=(16^(1/x)+16^(-1/x))/(16^(1/x)-16^(-1/x))

int(x^(19)+2x^(15))/((x^(8)+x^(4)+1)^(3))*dx

tan^-1((2x)/(1-15x^2))