Home
Class 12
MATHS
If lim(x->0)(1-cosx.cos2x.cos3x ....cosn...

If `lim_(x->0)(1-cosx.cos2x.cos3x ....cosn x)/x^2` has the value equal to 263, find the value of n(where `n in N)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr0)(1-cos x*cos2x*cos3x...cos nx)/(x^(2)) has the value equal to 263, find the value of n ( where n in N)

If Lt_(xto0)(1-cosxcos2xcos3x.......cosnx)/x^(2) has the value equal to 325 find the value of n.

Evaluate: ("Lim")_(x->0)(1-cosx cos2x cos3x)/(x^2)

lim_(x->0)(1-sqrt(cos2x)*root(3)(cos3x).....root(n)(cosnx))/x^2 has value 10 then value of n equal to

lim_(x->0)(1-sqrt(cos2x)*root(3)(cos3x).....root(n)(cosnx))/x^2 has value 10 then value of n equal to

lim_(x->0)(1-sqrt(cos2x)*root(3)(cos3x).....root(n)(cosnx))/x^2 has value 10 then value of n equal to

value of lim_(x->0)(1-cos^3x)/(xsinx*cosx) is

If lim_(x rarr0)(1-cos(1-cos(1-cos x)))/(x^(a)) exists and has a non-zero value,find the value of a.

if lim_(x rarr0)(1+a cos2x+b cos4x)/(x^(4)) exists for all x in R and has the value equal to c. Find the value of 3(a+b+c)

Evaluate : lim_(x rarr 0)(1-cosx cos2x cos3x)/(sin^2 2x) .