Home
Class 12
MATHS
int(0)^( pi/4)(tan^(n)x+tan^(n-2)x)d(x-[...

int_(0)^( pi/4)(tan^(n)x+tan^(n-2)x)d(x-[x])

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)(tan^(4)x + tan^(2)x)dx=

If n!=1, int_0^(pi/4) (tan^nx+tan^(n-2)x)d(x-[x])= (A) 1/(n-1) (B) 1/(n+1) (C) 1/n (D) 2/(n-1)

If n!=1, int_0^(pi/4) (tan^nx+tan^(n-2)x)d(x-[x])= (A) 1/(n-1) (B) 1/(n+1) (C) 1/n (D) 2/(n-1)

A:int_(0)^(pi//4)(tan^(6)x+tan^(4)x)dx=(1)/(5) R:int_(0)^(pi//4)(tan^(n)x+tan^(n-2)x)dx=(1)/(n-1)

int_(0)^(pi//4)(tan^(4)x+tan^(3)x)dx=

The value of int_0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [ ] denotes greatest integer function) is equal to

The value of int_0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] denote(d) cot 1+ cot2X-X)))dx (where, - denotes greatest integer function) is equal to

The value of int_0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] denote(d) cot 1+ cot2X-X)))dx (where, - denotes greatest integer function) is equal to

int_(0)^(pi//4)(tan^(4) x + tan^(2) x ) dx=

int_(0)^(pi//4) (Tan^(n)(x-[x])+Tan^(n-2)(x-[x]))dx