Home
Class 12
MATHS
" The tangent to the curve "y=ax^(2)+bx"...

" The tangent to the curve "y=ax^(2)+bx" at "(2,-8)" is parallel to "x" -axis."

Promotional Banner

Similar Questions

Explore conceptually related problems

The points at which the tangents to the curve ax^(2) + 2hxy + by^(2) =1 is parallel to y -axis is

Find the point or points at which the tangent to the curve y=x^4/4-2x^2 is parallel to the X-axis.

Points at which the tangent to the curve y=x^(2) (x-2)^(2) is parallel to the X- axes are

The tangent to the curve 2a^(2)y=x^(3)-3ax^(2) is parallel to the x -axis at the points

Point (s) at which the tangent to the curve y=(a^(2)x)/(a^(2)+x^(2)) is parallel to the X - axes is (are)

Equation of the tangent to the curve 4y=x^(2)+3x+2 , which is parallel to X-axis , is

If the tangent to the curve y=ax^(2)+3x+7 , at the point x=6 , is parallel to X-axis, then : a^(=)