Home
Class 12
MATHS
Lt(n rarr oo)sum(r=1)^(n)(1)/(sqrt(4n^(2...

Lt_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(sqrt(n^(2)-r^(2))) =

Lt_(ntooo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=

Lt_(ntooo)sum_(r=1)^(n-1)(1)/(sqrt(n^(2)-r^(2)))=

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

{:(" "Lt),(n rarr oo):}1/n sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

Lt_(n rarr oo)sum_(r=0)^(n-1)((r)/(n^(2) + r^(2)))

Lt_(n rarr oo)[(1)/(n)+(1)/(sqrt(n^(2) -1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+... "to n terms"]