Home
Class 11
MATHS
In a triangle ABC, if A =pi/4 , then the...

In a triangle ABC, if `A =pi/4` , then the range of `(sin^2B + sin^2C)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC if sin A sin B= ab//c^2 , then the triangle is

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

If Delta ABC is right triangle and if angleA = (pi)/(2) , then prove that sin^(2) B + sin^(2)C = 1

In triangle ABC if a, b, c are in A.P., then the value of (sin.(A)/(2)sin.(C)/(2))/(sin.(B)/(2)) =

In triangle ABC if a, b, c are in A.P., then the value of (sin.(A)/(2)sin.(C)/(2))/(sin.(B)/(2)) =

If in triangle ABC,/_C=45^(@) then find the range of the values of sin^(2)A+sin^(2)B

In a triangles ABC if sin A sin B = ( ab)/( c^(2)) , then the triangle is