Home
Class 12
MATHS
n in N, ((1+i)/sqrt2)^(8n)+((1-i)/sqrt2)...

`n in N`, `((1+i)/sqrt2)^(8n)+((1-i)/sqrt2)^(8n)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

If n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8)n is

If i^(2)=-1 and ((1+i)/(sqrt2))^(n)=((1-i)/(sqrt2))^(m)=1, AA n, m in N , then the minimum value of n+m is equal to

Show that the integral part in each of the following is odd. n in N . (i) (5+2sqrt(6))^(n) (ii) (8+3 sqrt(7))^(n) (iii) (6+sqrt(35))^(n)

((-1+i sqrt(3))/(2))^(3 n)+((-1-i sqrt(3))/(2))^(3 n)=

For any integer n,the argument of ((sqrt(3)+i)^(4n+1))/((1-i sqrt(3))^(4n))

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

For any integer n, the argument of ((sqrt(3)+i)^(4 n+1))/((1-i sqrt(3))^(4 n)) is

Show that ((-1+sqrt(3)i)/(2))^(n)+((-1-sqrt(3i))/(2))^(n) is equal to 2 when n is a multiple of 3 and 3 is equal to -1 when n is any other positive integer.