Home
Class 13
MATHS
" i) "(x-1)/(log(3)(9-3^(x))-3)<=1...

" i) "(x-1)/(log_(3)(9-3^(x))-3)<=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (x-1)/((log)_(3)(9-3^(x))-3)<=1

Solve (x-1)/(log_(3)(9-3^(x))- 3) le 1 .

Solve: (x-1)/((log)_3(9-3^x)-3)lt=1.

Solve: (x-1)/((log)_3(9-3^x)-3)lt=1.

Solve: (x-1)/((log)_3(9-3^x)-3)lt=1.

log_(x)(log_(9)(3^(x)-9))<1

(log_(3)(x-3))/(x-7)+1=(log_(3)(x-3))/(x-1)h as

If 1,log_(81)(3^(x)+48)" and "log_(9)(3^(x)-(8)/(3)) are in A.P., then find x

Find the value of x satisfying the equation,sqrt((log_(3)(3x)^((1)/(3))+log_(x)(3x)^((1)/(3)))log_(3)(x^(3)))+sqrt((log_(3)((x)/(3))^((1)/(3))+log_(x)((3)/(x))^((1)/(3)))log_(3)(x^(3)))=2

If 1,log_(9)(3^(1-x)+2),log_(3)(4*3^(x)-1) are in A.P then x equals to