Home
Class 12
MATHS
f(x)={[|x|+3," if "x<=-3],[-2x," if "-3<...

f(x)={[|x|+3," if "x<=-3],[-2x," if "-3=3]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=|x|+3, for x =3

If f(x) is continuous at x=3 , where f(x)={:{(|x-3|", for " x !=3),(k", for " x=3):} , then k=

The funcion f(x)=(|x-3|)/(x-3) at x=3, is

If f (x)= {{:(x ^(3), , x ∈ Q),(-x ^(3),,x ∉ Q):}, then :

Find lim_(x rarr 3)f(x),where f(x)=[|x-3|]/[x-3] ,xne3 .

Evaluate left-handed limit of the function: f(x)={((|x-3|)/(x-3),x!=3),(0,x=3):} at x= 3.

Evaluate right-handed limit of the function: f(x)={((|x-3|)/(x-3),x!=3),(0,x=3):} at x= 3.

Verify the existence of lim_(x to 3) f(x) , where f(x)={:{(|x-3|/(x-3),for , xne 3),(0, for ,x =3):}

Examine the following functions for continuity: f(x) = {:{((|x-3|)/(2(x-3)), if x ne 3),(0, if x =3):} at x = 3