Home
Class 10
MATHS
5^(x+1)+5^(2-x)=5^(3)+1...

5^(x+1)+5^(2-x)=5^(3)+1

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the LCM and HCF of the following polynomials 36(x +2)^(2) (x-1)^(3) (x +3)^(5), 45 (x +2)^(5) (x -1)^(2) (x +3)^(5) and 63 (x -1)^(5) (x +2)^(5) (x +3)^(4)

1,1,1(2^(x)+2^(-x))^(2),(3^(x)+3^(-x))^(2),(5^(x)+5^(-x))^(2)(2^(x)-2^(-x))^(2),(3^(x)-3^(-x))^(2),(5^(x)-5^(-x))^(2)]|=

Solve 7*3^(x+1)-5^(x+3)=3^(x+1)-5^(x+2) .

The value of lim_(x rarr oo)(3^(x+1)-5^(x+1))/(3^(x)-5^(x))=5

The integral int(2x^(12)+5x^(9))/([x^(5)+x^(3)+1]^(3))*dx is equal to- (A) (x^(10))/(2(x^(5)+x^(3)+1)^(2))(B)(x^(5))/(2(x^(5)+x^(3)+1)^(2))(C)-(x^(10))/(2(x^(5)+x^(3)+1)^(2))(D)-(x^(5))/(2(x^(5)+x^(3)+1)^(2))

If the mean of the scores x_(1), x_(2), x_(3), x_(4), x_(5) "and" x_(6) is x, then mean of 5x_(1), 5x_(2), 5x_(3), 5x_(4), 5x_(5), "and" 5x_(6) is ______.

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,