Home
Class 12
MATHS
f(x)=arccos(2x)/(1+x)...

f(x)=arccos(2x)/(1+x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)), then (a) f(x_(1))f(x)=f(x_(1)+x_(2))(b)f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^(2)+x)(d)f(x_(1))+f(x_(2))=f((x_(1)+x_(2))/(1+x_(1)x_(2)))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x))f(2(x)/(1+x^(2)))=2f(x)

If f(x)=log((1-x)/(1+x)) ,|x|<1" and f((2x)/(1+x^(2)))=K .f(x) then 50K=

If f(x)=log((1+x)/(1-x)), then f(x) is (i) Even Function (ii) f(x_(1))-f(x_(2))=f(x_(1)+x_(2)) (iii) ((f(x_(1)))/(f(x_(2))))=f(x_(1)-x_(2)) (iv) Odd function

If f(x) =log((1+x)/(1-x)) then prove that: f((x_(1)+x_(2))/(1+x_(1)x_(2)))=f(x_(1)) + f(x_(2))

If : f(x) =log ((1+x)/(1-x)), then show that f(a)+f(b)=f ((a+b)/(1+ab)) and 2f(x)=f ((2x)/(1+x^2)).