Home
Class 12
MATHS
int((pi)/(6))^((pi)/(3))(1)/(1+sqrt(tan ...

int_((pi)/(6))^((pi)/(3))(1)/(1+sqrt(tan x))=(pi)/(12)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tanx))=(pi)/(12)

Evaluate int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tan x))

Evaluate: int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tan x))

Statement I int_((pi)/(6))^((pi)/(3))(1)/(1+tan^(3)x) is (pi)/(12) statement II int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

int_(pi//6)^(pi//3) (dx)/(1 + sqrt(tan x)) =

int_(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

The value of int_((pi)/(6))^((pi)/(3)) (dx)/(1+sqrt(tan x)) is equal to -

int_((-pi)/(4))^((pi)/(4)) (dx)/(1+e^(tan x))

Evaluate the following integrals using properties of integration : int_((pi)/(8))^((3pi)/(8))(1)/(1+sqrt(tan x )) dx