Home
Class 12
MATHS
Let S be set of ordered triples (x,y,z) ...

Let S be set of ordered triples `(x,y,z)` of real numbers for which `log_(10)(x+y)=z` and `log_(10)(x^(2)+y^(2))=z+1`. Suppose that `x^(3)+y^(3)=a(10^(3z))+b(10^(2z))` for real numbers a and b. Then `16a+b=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x,y,z be positive real numbers such that log_(2x)z=3,log_(5y)z=6 and log_(xy)z=(2)/(3) then the value of z is

The x,y,z are positive real numbers such that log_(2x)z=3,log_(5y)z=6, and log_(xy)z=(2)/(3), then the value of ((1)/(2z)) is .........

Let x,y,z be positive real numbers such that x+y+z=12 and x^(3)y^(4)z^(5)=(0.1)(600)^(3) Then x^(3)+y^(3)+z^(3) is

Let x,y,z be real numbers satisfying x+y+z=3,x^(2)+y^(2)+z^(2)=5 and x^(3)+y^(3)+z^(3)=7 then the value of x^(4)+y^(4)+z^(4) is

if x^(2) + y^(2) = z^(2) then prove that log_(y)(z+x) + log_(y) (z-x)=2

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

a=y^(2),b=z^(2),c=x^(2) then prove that log_(a)x^(3)*log_(b)y^(3)*log_(c)z^(3)=(27)/(8)