Home
Class 12
MATHS
If pi/3 and pi/4 are arguments of z1 and...

If `pi/3` and `pi/4` are arguments of `z_1` and `bar z_2`, then the value of arg `(z_1 z_2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If pi//3 and pi//4 are the arguments of z_1 and barz_2 then the value of arg (z_1.z_2)

If (pi)/(3) and (pi)/(4) are argument of z_(1) and bar(z)_(2) then the value of arg (z_(1)z_(2)) is

If pi//5 and pi//3 are the arguments of barz_1 and z_2 then the value of arg (z_1)+arg (z_2) is

If 2pi//3 and pi//6 are the arguments of barz_1 and z_2 then value of arg (z_1//z_2) is

If pi/5 and pi/3 are the arguments of bar(z)_(1) and bar(z)_(2), then the value of arg(z_(1))+arg(z_(2)) is

If (pi)/(5) and (pi)/(3) are respectively the arguments of barz_(1) and z_(2) , then the value of Arg (z_(1)- z_(2)) is

If (pi)/(2) and (pi)/(4) are the arguments of z_(1) and barz_(2) respectively , then Arg (z_(1))/(z_(2)) =

If (pi)/(2) and (pi)/(4) are the arguments of z_ (1) and bar (z_ (2)) respectively, then Arg ((z_ (1))/(z_ (2)) ) = (i) 3 (pi)/(4) (ii) (pi)/(4) (iii) pi (iv) (pi)/(3)

Complex number z_1 and z_2 satisfy z+barz=2|z-1| and arg (z_1-z_2) = pi/4 . Then the value of lm (z_1+z_2) is

A : If argument of z_1=pi//3 , argument of z_2=pi//4 then argument of z_1z_2" is " 7pi//12 R : Arg (z_1z_2)=Arg z_1+Argz_2