Home
Class 12
MATHS
if f(x) = x +x^2/1! + x^3/3! +---+ x^n/n...

if `f(x) = x +x^2/1! + x^3/3! +---+ x^n/n! then f(0) + f'(0) + f''(0) + -------f''^---n times (0)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x) = x +x^2/1! + x^3/2! +----+ x^n/(n-1)! then f(0) + f'(0) + f''(0) + -------f''^---n times (0) is equal to

If f(x) =x + x^(2)/(2!) + x^(3)/(3!) + ……+x^(n)/((n-1)!) , then f(0) + f^(1)(0) + f^(2)(0) +…………+f^(n)(0) is equal to:

If f(x) = (1 - x)^n then the value of f(0) + f'(0) + (f^('')(0))/(2!) + ….+ (f^('')(0))/(n!) is equal to

If f(x)= (1 + x)^n then the value of f(0) + f'(0) + (f''(0))/(2!) + .... + (f^n(0))/(n!) is

If f(x)=(a-n^(n))^(1//n) where a gt 0 and n in N , then f[f(x)] is equal to :

If f(a+x)=f(x), then int_(0)^(na)f(x)dx is equal to n in N

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to