Home
Class 12
MATHS
If A+B+C=pi, prove that : sinA cosB cosC...

If `A+B+C=pi`, prove that : `sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

If A+B+C = pi , prove that : cosA+cosB + cosC = 1+4sinA/2sinB/2sinC/2 .

If A+B+C = pi , prove that : cosA- cosB - cosC = 1-4sinA//2cosB//2cosC//2 .

If A+B+C=pi , prove that : (cosA)/(sinBsinC) + (cosB)/(sinC sinA) + (cosC)/(sinA sinB) =2 .

If A+B+C=pi , prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (cosC)/(sinA sinB) =2 .

If A+B+C=pi , prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (cosC)/(sinA sinB) =2 .

If A+B+C= pi ,prove that :cosA+cosB-cosC=-1+4cosA/2cosB/2sinC/2.

In a triangle ABC, cosecA (sinB cosC + cosB sinC) is :

In a DeltaABC , cosecA (sinB cosC + cosB sinC) =