Home
Class 8
MATHS
If 6^(x-y)=36 and 3^(x+y)=729, then find...

If `6^(x-y)=36` and `3^(x+y)=729`, then find `x^(2)-y^(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

729x^(6)-y^(6)

if (x-y)^3=216 and (x-y)^5=32 , then find x^3-y^3 . The following steps are involved in solving the above problem. Arrange them in sequential order. (A) Therefore, x-y=6 and x+y=2 . (B) Solving x-y=6 and x+y=2rArrx=4, y=-2 . (C) x^3-y^3=64-(-2)^3=64+8=72 (D) (x-y)^3=216rArr(x-y)^3=6^3rArr x-y=6 and (x+y)^5=32rArr (x+y)^5=2^5rArr x+y=2 .

If 2x+3y=13 and x y=6 , find the value of 8x^3+27\ y^3

If 2x+3y=13 and x y=6 , find the value of 8x^3+27 y^3

If 3x+2y=12 and x y=6, find the value of 9x^2+4y^2

If 2x+3y=13 and x y=6, find the value of 8x^3+27 y^3

If 3x+2y=12 and x y=6 , find the value of 9x^2+4y^2

If ((2x-y)/(x+2y))=(1)/(2), then find the value of ((3x-y)/(3x+y))

For x,y in N, if 3^(2x-y+1)=3^(y-2x+1)-8 and log_(6)|2x^(2)y-xy^(2)|=1+log_(36)(xy). Then find the absolute value of (x-y)