Home
Class 12
PHYSICS
The velocity of a particle of mass 2 kg ...

The velocity of a particle of mass 2 kg is given by `vec(v)=at hat(i)+bt^(2)hat(j)`. Find the force acting on the particle.

Promotional Banner

Similar Questions

Explore conceptually related problems

The position vector of a particle of mass m= 6kg is given as vec(r)=[(3t^(2)-6t) hat(i)+(-4t^(3)) hat(j)] m . Find: (i) The force (vec(F)=mvec(a)) acting on the particle. (ii) The torque (vec(tau)=vec(r)xxvec(F)) with respect to the origin, acting on the particle. (iii) The momentum (vec(p)=mvec(v)) of the particle. (iv) The angular momentum (vec(L)=vec(r)xxvec(p)) of the particle with respect to the origin.

The position vector of a particle of mass m= 6kg is given as vec(r)=[(3t^(2)-6t) hat(i)+(-4t^(3)) hat(j)] m . Find: (i) The force (vec(F)=mvec(a)) acting on the particle. (ii) The torque (vec(tau)=vec(r)xxvec(F)) with respect to the origin, acting on the particle. (iii) The momentum (vec(p)=mvec(v)) of the particle. (iv) The angular momentum (vec(L)=vec(r)xxvec(p)) of the particle with respect to the origin.

The position vector of a particle of mass m= 6kg is given as vec(r)=[(3t^(2)-6t) hat(i)+(-4t^(3)) hat(j)] m . Find: (i) The force (vec(F)=mvec(a)) acting on the particle. (ii) The torque (vec(tau)=vec(r)xxvec(F)) with respect to the origin, acting on the particle. (iii) The momentum (vec(p)=mvec(v)) of the particle. (iv) The angular momentum (vec(L)=vec(r)xxvec(p)) of the particle with respect to the origin.

A force (hat(i)-2hat(j)+3hat(k)) acts on a particle of position vector (3hat(i)+2hat(j)+hat(k)) . Calculate the torque acting on the particle.

A force (hat(i)-2hat(j)+3hat(k)) acts on a particle of position vector (3hat(i)+2hat(j)+hat(k)) . Calculate the torque acting on the particle.

The velocity of a body of mass 2 kg as a function of t is given by vec v (t) = 2t hat i + t^2 hatj . Find the momentum and the force acting on it, at time t = 2s.

The velocity of a particle of mass m is vec(v) = 5 hat(i) + 4 hat(j) + 6 hat(k)" " "when at" " " vec(r) = - 2 hat(i) + 4 hat (j) + 6 hat(k). The angular momentum of the particle about the origin is

The velocity of a particle of mass m is vec(v) = 5 hat(i) + 4 hat(j) + 6 hat(k)" " "when at" " " vec(r) = - 2 hat(i) + 4 hat (j) + 6 hat(k). The angular momentum of the particle about the origin is

A charged particle moves with velocity vec v = a hat i + d hat j in a magnetic field vec B = A hat i + D hat j. The force acting on the particle has magnitude F. Then,

A charged particle moves with velocity vec v = a hat i + d hat j in a magnetic field vec B = A hat i + D hat j. The force acting on the particle has magnitude F. Then,