Home
Class 12
MATHS
(dy)/(dx)=x^(3)+x^(2)+8x+1...

`(dy)/(dx)=x^(3)+x^(2)+8x+1`

Promotional Banner

Similar Questions

Explore conceptually related problems

x(x-1)(dy)/(dx)-(x-2)y=x^(3)(2x-1)

The solution of (dy)/(dx) + (3x^(2) y)/(1 + x^(3)) = (1+ x^(2))/(1 + x^(3)) is

The solution of (dy)/(dx) + (3x^(2) y)/(1 + x^(3)) = (sin^(2) x)/(1 + x^(3)) is

Solve the following differential equations (i) (1+y^(2))dx = (tan^(-1)y - x)dy (ii) (x+2y^(3))(dy)/(dx) = y (x-(1)/(y))(dy)/(dx) + y^(2) = 0 (iv) (dy)/(dx)(x^(2)y^(3)+xy) = 1

The degree and order of differential equatiion (x+y(dy)/(dx))^((1)/(2))=(x sin x((dy)/(dx))^(2)+y)/(((dy)/(dx))^(3)) is :

Let y = (x^8 + x^4 + 1)/(x^4 + x^2 + 1) . If (dy)/(dx) = ax^3 + bx . Then

x(x^(2)+1)(dy)/(dx)=y(1-x^(2))+x^(3)*ln x

Solve the following differential equations : y -x (dy)/(dx) =3 (1+x^(2) (dy)/(dx))

If y=x+(x^(3))/(3)+(x^(5))/(5)+…oo , show that (dy)/(dx)=(1)/(1-x^(2)) .