Home
Class 12
MATHS
" Prove that "2sin^(-1)((3)/(5))*tan^(-1...

" Prove that "2sin^(-1)((3)/(5))*tan^(-1)((17)/(31))=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 2tan^(-1)((3)/(4))-tan^(-1)((17)/(31))=(pi)/(4) .

Prove that 2tan^(-1)""(3)/(4)-tan^(-1)""(17)/(31)=(pi)/(4)

Prove that sin^(-1)((4)/(5))+2 Tan^(-1)((1)/(3)) = (pi)/2 .

Prove that "sin"^(-1)(4)/(5) +2"tan"^(-1) (1)/(3)=(pi)/(2) .

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi

Prove that sin^(-1)((4)/(5))+tan^(-1)((5)/(12))+cos^(-1)((63)/(65))=(pi)/(2)

Show that : 2 sin^(-1) (3/5)-tan^(-1) (17/31) = pi/4

Show that : 2 sin^(-1).(3/5) - tan^(-1)(17/31) = pi/4

Prove that 2tan^(-1)((1)/(2))+tan^(-1)((1)/(7))=sin^(-1)((31)/(25sqrt(2)))