Home
Class 12
MATHS
" (ii) "((a+b sin^(-1)x)^(n))/(sqrt((1-x...

" (ii) "((a+b sin^(-1)x)^(n))/(sqrt((1-x^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

int((a+b sin^(-1)x)^(n))/(sqrt((1-x^(2))))dx

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

If x in[(sqrt(3))/(2), 1] then [sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]=

If f(x)=(sin^(-1)x)/(sqrt(1-x^2)),t h e n(1-x^2)f^(x)-xy(x)= 1 (b) -1 (c) 0 (d) none of these

If f(x)=(sin^(-1)x)/(sqrt(1-x^2)),t h e n(1-x^2)f^(x)-xf(x)= (a)1 (b) -1 (c) 0 (d) none of these

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

solve : sin ^(-1) ""((x)/(sqrt(1+x^(2))))-sin ^(-1)((1)/(sqrt(1+x^(2))))= sin ^(-1) ((1+x)/(1+x^(2)))

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))