Home
Class 12
MATHS
" (b) "a^(3)-(1)/(a^(3))-2a+(2)/(a)...

" (b) "a^(3)-(1)/(a^(3))-2a+(2)/(a)

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the coefficients in the expansion of (x^(2)-(1)/(3))^(199) xx (x^(3) + (1)/(2))^(200) is A) (1)/(3) B) -(1)/(3) C) (2)/(3) D) (3)/(2)

If the points (k,2k),(3k,3k) and (3,1) are collinear,then k(1)/(3)(b)-(1)/(3)(c)(2)/(3)(d)-(2)/(3)

Prove that the two parabolas y^(2)=4ax and x^(2)=4by intersects at an angle of tan^(1)[(3a^((1)/(3))b^((1)/(3)))/(2(a^((2)/(3))+b^((2)/(3))))]

The value of log_(0.01)(1000) is a.(1)/(3) b.-(1)/(3) c.(3)/(2) d.-(3)/(2)

The direction cosines of the vector 2hati+2hatj-hatk are: a) (2)/(3),(1)/(3),(1)/(3) b) (1)/(3),(1)/(3),(2)/(3) c) (1)/(3),(-2)/(3),(2)/(3) d) (2)/(3),(2)/(3),(-1)/(3)

The straight lines represented by x^(2)+mxy-2y^(2)+3y-1=0 meet at (a)(-(1)/(3),(2)/(3))( b) (-(1)/(3),-(2)/(3))(c)((1)/(3),(2)/(3)) (d) none of these

If a+2b=6 and ab=4, then what is (2)/(a)+(1)/(b)?( a) (1)/(2) (b) (1)/(3)(c)(3)/(2) (d) 2 (e) (5)/(2)

Locus of centroid of the triangle whose vertices are (a cos t,a sin t),(b sin t-b cos t)and(1,0) where t is a parameter is: (3x-1)^(2)+(3y)^(2)=a^(2)-b^(2)(3x-1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)-b^(2)

Prove that (a-2b)^3+(2b-1)^3+(1-a)^3=3(a-2b)(2b-1)(1-a)

det[[2a_(1)b_(1),a_(1)b_(2)+a_(2)b_(1),a_(1)b_(3)+a_(3)b_(1)a_(1)b_(2)+a_(2)b_(1),2a_(2)b_(2),a_(2)b_(3)+a_(3)b_(2)a_(1)b_(3)+a_(3)b_(1),a_(3)b_(2)+a_(2)b_(3),2a_(3)b_(3)]]=