Home
Class 14
MATHS
" Q.The value of "(2+sqrt(3))/(2-sqrt(3)...

" Q.The value of "(2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+1)/(sqrt(3)-1)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(2) = 1.414, sqrt(3) = 1.732, sqrt(5) = 2.236 and sqrt(6) = 2.449 , find the value of (2+sqrt(3))/(2-sqrt(3)) +(2-sqrt(3))/(2+sqrt(3)) +(sqrt(3) -1)/(sqrt(3) +1)

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

(sqrt(3)-sqrt(2))(1)/(sqrt(3))

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

The value of 2(sqrt(2)+sqrt(6))/(3sqrt(2+sqrt(3)))+sqrt(2+sqrt(3))+sqrt(2-sqrt(3))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

If sqrt(2)=1.414 and sqrt(3)=1.732, then the value of (1+sqrt(2))/(sqrt(3)+sqrt(2))+(1-sqrt(2))/(sqrt(3)-sqrt(2)) is