Home
Class 11
MATHS
[" If "|vec A|<|vec B|,vec R perpvec A,|...

[" If "|vec A|<|vec B|,vec R perpvec A,|vec R|=(|vec B|)/(2)],[" then find the amgle boween "bar(A)" and "],[(" B ")/(B)" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion: If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then angle between vec(A) and vec(B) is 90^(@) Reason: vec(A)+vec(B)= vec(B)+vec(A)

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If |vec(a)|= |vec(b)| =1 and |vec(a) xx vec(b)|= vec(a).vec(b) , then |vec(a) + vec(b)|^(2)=

If vec a , vec b are two vectors, then write the truth value of the following statements: vec a=- vec b| vec a|=| vec b| | vec a|=| vec b| vec a=+- vec b | vec a|=| vec b| vec a= vec b

If vec a , vec b are two vectors, then write the truth value of the following statements: vec a=- vec b| vec a|=| vec b| | vec a|=| vec b| vec a=+- vec b | vec a|=| vec b| vec a= vec b

If vec a, vec b and vec c are perpendicular to vec b + vec c, vec c + vec a, vec a + vec b respectively and if | vec a + vec b | = 6, | vec b + vec c | = 8 and | vec c + vec a | = 10 then find the value of vec a + vec b + vec c

Let vec a,vec b, and vec c are vectors such that |vec a|=3,|vec b|=4 and |vec c|=5, and (vec a+vec b) is perpendicular to vec c,(vec b+vec c) is perpendicular to vec a and (vec c+vec a) is perpendicular to vec b. Then find the value of |vec a+vec b+vec c|

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

If vec a, vec b, vec c are three vectors such that vec a . (vec b + vec c) + vec b . (vec c + vec a) + vec c . (vec a + vec b) = 0 and |vec a| = 1, |vec b | = 4, |vec c| = 8 , then |vec a + vec b + vec c| =