Home
Class 12
MATHS
Find (dy)/(dx), when: x^(n)+y^(n)=a^...

Find `(dy)/(dx)`, when:
`x^(n)+y^(n)=a^(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

" Find "(dy)/(dx)" if "x^(m)y^(n)=x^(m)+y^(n)

Find (dy)/(dx) if x^(m)y^(n)=((x)/(y))^(m+n)

Find dy/dx : x^m y^n = (x+y)^m+n

Find (dy)/(dx), when x=a(theta+sintheta)a n dy=a(1-costheta)

Find (dy)/(dx) if,y=x^(n)+n^(x)+x^(x)+n^(n)

Find (dy)/(dx) if, y=x^n+n^x+x^x+n^n

Find dy/dx if x^m y^n = (x/y)^(m+n)

Find dy/dx if y is equal to : x^(x^n) +x^(n^x)

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)