Home
Class 11
MATHS
" 4) "y=cos(log x+e^(x))...

" 4) "y=cos(log x+e^(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if y=cos(log x+e^(x)) ,x>0

Find (dy)/(dx), if y=cos(log x+e^(x)) ,x>0

Differentiate the function y=cos[log x+e^(x)] with respect to x.

Differentiate the following y=cos(log(e^x))

Find (dy)/(dx)(i)y=e^(-x^(2))sin(log x)(ii)y=sqrt(a+sqrt(a+x))(iii)y=cos(log x)^(2)

Solve the following differential equations : (dy)/(dx)= (x e^(x) log x + e^(x))/(x cos y)

The solution of the DE x cos y dy = (x e ^(x) log x + e ^(x)) dx is

Solve : (dy)/(dx)=(x e^(x)log x +e^(x))/(x cos y) .

If f(x) = cos (log _(e) x), then f (x) f(y) -1/2 [f(xy) +f((x)/(y))] has the value-