Home
Class 9
MATHS
If f(x)=x/(2^(x)-1), then show that f(-1...

If `f(x)=x/(2^(x)-1)`, then show that f(-1) = 2.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) , then show that f(-1/x)=-1/f(x) .

If f(x) = 2/(2-x) then show that f(f(f(x))) = (2(x-1))/x

If f(x)=(4^(x))/(4^(x)+2) , then show that f(x)+f(1-x)=1

If f(x)=(4^(x))/(4^(x)+2) , then show that f(x)+f(1-x)=1

If f(x)=(x-1)/(x+1), then show that f((1)/(x))=-f(x) (ii) f(-(1)/(x))=(1)/(f(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

If f(x)=(x-1)/(x+1) then show that f(1/x)=-f(x) and f(-1/x)=(-1)/f(x)

If f(x)=(x-1)/(x+1) ,then show that f(-1/x)=-1/f(x) .

If f(x)= (x-1)/(x+1) , Then show that f(-(1)/(x))= (-1)/(f(x))