Home
Class 10
MATHS
Evaluate : "cosec "31^(@)-sec 59^(@)....

Evaluate : `"cosec "31^(@)-sec 59^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \csc 31^\circ - \sec 59^\circ \), we can follow these steps: ### Step 1: Rewrite the secant function We know that: \[ \sec \theta = \frac{1}{\cos \theta} \] Thus, we can rewrite \( \sec 59^\circ \) as: \[ \sec 59^\circ = \frac{1}{\cos 59^\circ} \] ### Step 2: Use the complementary angle identity We can use the identity that states: \[ \cos(90^\circ - \theta) = \sin \theta \] This means: \[ \cos 59^\circ = \sin(90^\circ - 59^\circ) = \sin 31^\circ \] So, we can rewrite \( \sec 59^\circ \): \[ \sec 59^\circ = \frac{1}{\sin 31^\circ} \] ### Step 3: Rewrite the cosecant function We also know that: \[ \csc \theta = \frac{1}{\sin \theta} \] Thus, we can rewrite \( \csc 31^\circ \) as: \[ \csc 31^\circ = \frac{1}{\sin 31^\circ} \] ### Step 4: Substitute back into the expression Now, substituting these identities back into the original expression: \[ \csc 31^\circ - \sec 59^\circ = \frac{1}{\sin 31^\circ} - \frac{1}{\sin 31^\circ} \] ### Step 5: Simplify the expression Now, we can see that: \[ \csc 31^\circ - \sec 59^\circ = \frac{1}{\sin 31^\circ} - \frac{1}{\sin 31^\circ} = 0 \] ### Final Answer Thus, the value of \( \csc 31^\circ - \sec 59^\circ \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - B (SECTION - B)|3 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - B (SECTION - C)|5 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - A (SECTION - D)|4 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise LONG SHORT ANSWER TYPE QUESTIONS|8 Videos
  • MBD NEW STYPE MODEL TEST PAPER - 2

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|6 Videos

Similar Questions

Explore conceptually related problems

cos ec31 ^ (@) - sec59 ^ (@)

Evalulate : "cosec "32-sec58^(@) .

Find the value of "cosec"70^(@)-sec20^(@)

Evaluate: "cosec"^(2)30^(@)+sec^(2)60^(@)+tan^(2)30^(@) .

Evaluate : cosec10^@-sqrt3sec10^@

Evaluate : (cos 45^(@))/(sec30^(@)+"cosec "30^(@))

(cosec 31^@)/(sec 59^@) is equal to: (cosec 31^@)/(sec 59^@) का मान क्या होगा?

Given tantheta=1/sqrt3 , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

tanalpha=2 , then the value of ("cosec"^(2)alpha-sec^(2)alpha)/("cosec"^(2)alpha+sec^(2)alpha) is

Evaluate : 3 cos 80^@ cosec 10^@ + 2 cos 59^@ cosec 31^@