Home
Class 12
MATHS
" 4"sin^(3)(2x+1)...

" 4"sin^(3)(2x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of y = 3 sin^3 (2x^4 + 1) .

The value of the integral int_(1)^(3)((x-2)^(4)sin^(3)(x-2)+(x-2)^(2019)+1)dx is

int (sin 2x)/(3 sin^(4) x-4 sin^(2) x+1) dx

Lt_(x to 0)(sin^(-1)x+3x)/(tanx+2sin((1)/(2)sin^(-1)x)[3-4"sin"^(2)((1)/(2)sin^(-1)x)])=

The derivative of sin^(-1) (2x sqrt(1-x^(2))) with respect to ltbr. sin^(-1)(3x - 4x^(3)) is

y=sin^(-1)(3sin x-4sin^(3)x)" ,then "(dy)/(dx) at x= (sqrt(3))/(2) is

sin x + sin^(2) x + sin^(3) x = 1 rArr cos^(6) x - 4cos^(4) x + cos^(2) x =

The general solution satisfying the trigonometricequations 4sin^(3)x+1=sin x(1+4sin x) and cos3x=3-4cos^(2)x is given by

" If "I=int(cos^(3)xdx)/((sin^(4)x+3sin^(2)x+1)tan^(-1)(sin x+cos ecx)),=-A log|tan^(-1)(sin x+cos ecx)|+C" ,then A is equal "