Home
Class 12
MATHS
[" The number of real solutions of "tan^...

[" The number of real solutions of "tan^(-1)(sqrt(x(x+1)))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)" is "],[" 1) "0],[" 2) 1"],[" 3) "2],[" 4) infinitely many "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

Find the real solutions of tan^(-1)(sqrt(x(x+1)))+sin^(-1)(sqrt(x^(2)+x+1))=pi/2

The number of real solutions of tan^(-1)sqrt(x^(2)+x)+ cosec^(-1)sqrt(1-x^(2)-x)=pi/2 is

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi//2 a)0 b)1 c)2 d) oo

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :