Home
Class 11
MATHS
If both the distinct roots of the equati...

If both the distinct roots of the equation `|sinx|^2+|sinx|+b=0in[0,pi]` are real, then the values of `b` are `[-2,0]` (b) `(-2,0)` `[-2,0]` (d) `non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

If both the distinct roots of the equation |sinx|^(2)+|sinx|+b=0 in [0,pi] are real, then the values of b are

If both the distinct roots of the equation |sin x|^(2)+|sin x|+b=0 in [0,pi] are real, then the values of b are [-2,0](b)(-2,0)[-2,0] (d) none of these

The number of solutions of the equation 4e^(sinx)-3e^(-sinx)+4=0 in [0,2pi] is

If a and b are the non-zero distinct roots of x^(2) + ax + b =0 , then the minimum value of x^2 + ax + b is

If e^(sinx)-e^(-sinx)-4=0 , then the number of real values of x is

If e^(sinx)-e^(-sinx)-4=0 , then the number of real values of x is

If the roots of equation ax^(2)+bx+c=0;(a,b,c in R and a!=0) are non-real and a+c>b. Then

It roots of equation 2x^(2)+bx+c=0:b,c varepsilon R are real & distinct then the roots of equation 2cx^(2)+(b-4c)x+2c-b+1=0 are