Home
Class 12
MATHS
" (vii) "int(cos^(2)(log x))/(x)dx=(1)/(...

" (vii) "int(cos^(2)(log x))/(x)dx=(1)/(4)(2log x+sin(2log x))+c

Promotional Banner

Similar Questions

Explore conceptually related problems

(i) int (sin(log x))/x dx (ii) int log x (sin[1+(logx)^2])/x dx

int cos(log x)dx is equal to (A)(x)/(2)(cos(log x)-sin(log x))+c(B)x(cos(log x)+sin(log x))+c(C)(x)/(2)(cos(log x)+sin(log x)+c(D)x(cos(log x)-sin(log x))+c

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

int sin(log x) dx=........ (A) (x/2)[sin(log x) - cos(log x)] + c (B) (x/2)[sin(log x) + cos(log x)] + c (C) (x/2)[cos(log x) - sin(log x)] + c (D) (x/2)[cos(log x) - sin(log x)] + c

int (1)/(log x)-(1)/((log x)^(2))dx=

int[log(log x)+(1)/((log x)^(2))]dx

int[sin(log x)+cos(log x)]dx =

int[(1)/(log x)-(1)/((log x)^(2))]dx=

int(ln(1+sin^(2)x))/(cos^(2)x)dx

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C