Home
Class 12
CHEMISTRY
The osmotic pressure of decimolar soluti...

The osmotic pressure of decimolar solution of urea at `27^(@)C` is
a.`2.49` bar, b.5 bar, c.`3.4` bar, d.`1.25` bar

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(a), bar(b), bar(c) are non-coplanar vectors. Prove thate the following four points are coplanar - bar(a) + 4 bar(b) - 3 bar(c) , 3 bar(a) + 2 bar(b) - 5 bar(c) - 3 bar(a) + 8 bar(b) - 5 bar(c) , - 3 bar(a) + 2 bar(b) + bar(c)

IF bar a , bar b , bar c are mutually perpendicular vectors having magnitudes 1,2,3 respectively then [ bar a + bar b + bar c " " bar b - bar a " " bar c ]=?

(d) answer ANY one question :1. bar a, bar b and bar c be three vectors such that bar a +bar b+ bar c =0 and |bar a|=1, |bar b|=4,|bar c |=2 . Evlautae bar a.bar b + bar b.bar c+bar c.bar a .

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

Given four non zero vectors bar a,bar b,bar c and bar d. The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

i) bar(a), bar(b), bar(c) are pairwise non zero and non collinear vectors. If bar(a)+bar(b) is collinear with bar(c) and bar(b)+bar(c) is collinear with bar(a) then find the vector bar(a)+bar(b)+bar(c) . ii) If bar(a)+bar(b)+bar(c)=alphabar(d), bar(b)+bar(c)+bar(d)=betabar(a) and bar(a), bar(b), bar(c) are non coplanar vectors, then show that bar(a)+bar(b)+bar(c)+bar(d)=bar(0) .

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals