Home
Class 12
MATHS
(sin A+cos A)(1-sin A*cos A)=sin^(3)A+co...

`(sin A+cos A)(1-sin A*cos A)=sin^(3)A+cos^(3)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

3. (sin x+cos x)(1-sin x cos x)=sin^(3)x+cos^(3)x

(sin^(3)A+cos^(3)A)/(sin A+cos A)+(sin^(3)A-cos^(3)A)/(sin A-cos A)=2

Prove that (sin^3A+cos^3A)/(sin A+cos A)+(sin^3A-cos^3A)/(sin A-cos A)=2

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)

((1-sin A cos A) (sin ^ (2) A-cos ^ (2) A)) / (cos A (sec A-cos ecA) (sin ^ (3) A + cos ^ (3) A ))

If A = 30^(@) , show that : (i) (1 + sin 2A + cos 2A)/(sin A + cos A) = 2 cos A (ii) (cos^(3)A - cos 3A)/(cos A) + (sin^(3)A + sin 3A)/(sin A) = 3

Prove the following identity: (1-s in A cos A)/(cos A(sec A-cos ecA))(sin^(2)A-cos^(2))/(sin^(3)A+cos^(3)A)=sin A

Prove the following identities: (cos A)/(1-sin A)+(sin A)/(1-cos A)+1=(sin A cos A)/((1-sin A)(1-cos A))((1+cot A+tan A)(sin A-cos A)/(sec^(3)A-cos ec^(3)A)=sin^(2)A cos^(2)A

(sin^(3) A + sin 3A)/( sin A )+ (cos^(3) A - cos 3A)/( cos A )=

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2