Home
Class 12
MATHS
Let f(x)=x^(105)+x^(53)+x^(27)+x^(13)+x^...

Let `f(x)=x^(105)+x^(53)+x^(27)+x^(13)+x^3+3x+1.` If `g(x)` is inverse of function `f(x),` then the value of `g^(prime)(1)` is (a)3 (b) `1/3` (c) `-1/3` (d) not defined

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(105)+x^(53)+x^(27)+x^(13)+x^(3)+3x+1 If g(x) is inverse of function f(x), then the value of g'(1) is (a)3(b) (1)/(3)(c)-(1)/(3)(d) not defined

Let f(x)=x^(3)+3x+2 and g(x) is inverse function of f(x) then the value of g'(6) is

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

If g(x) is inverse function of f(x)=x^(3)+3x-3 then g'(1)=

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4