Home
Class 12
MATHS
" If "f(9)=9,f^(*)(9)=4," then "lim(x ra...

" If "f(9)=9,f^(*)(9)=4," then "lim_(x rarr9)(sqrt(f(x))-3)/(sqrt(x)-3)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(9) =9, f^(')(9) = 4 , then lim_(x rarr 9)(sqrt(f(x))-3)/(sqrtx - 3) =

lim_(x rarr0)(sqrt(x+4)-2)/(sqrt(x+9)-3)

lim_(x rarr9)(3-sqrt(x))/(4-sqrt(2x-2))

If f(9)=9 and f'(9)=1 then lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)

lim_(x rarr3)(sqrt(x)-sqrt(3))/(sqrt(x^(2)-9))

lim_(x rarr0)(sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3)

If f(9)=9 and f'(9)=4 then lim_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to -

If f (9) = 9, f '(9) = 1, then lim_(x rarr 9) (8-sqrt(f(x)))/(3-sqrtx) =

If f(9)=9,f'(9)=0, then underset(xrarr9) lim((sqrt(f(x))-3))/(sqrt(x)-3) is a)0 b)f(0) c)f(3) d)f'(3)