Home
Class 14
MATHS
(sin theta" cosec "theta tan theta cot t...

`(sin theta" cosec "theta tan theta cot theta)/(sin^(2)theta+cos^(2)theta)`

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sin \theta \cdot \csc \theta \cdot \tan \theta \cdot \cot \theta) / (\sin^2 \theta + \cos^2 \theta)\), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Denominator**: We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Therefore, we can simplify the denominator: \[ \sin^2 \theta + \cos^2 \theta = 1 \] 2. **Rewrite the Expression**: Substitute the denominator in the original expression: \[ \frac{\sin \theta \cdot \csc \theta \cdot \tan \theta \cdot \cot \theta}{1} \] This simplifies to: \[ \sin \theta \cdot \csc \theta \cdot \tan \theta \cdot \cot \theta \] 3. **Use Trigonometric Identities**: Recall the definitions of the trigonometric functions: - \(\csc \theta = \frac{1}{\sin \theta}\) - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) Substitute these identities into the expression: \[ \sin \theta \cdot \frac{1}{\sin \theta} \cdot \frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta} \] 4. **Simplify the Expression**: Now, simplify the expression step by step: - The \(\sin \theta\) in the numerator and denominator cancels out: \[ 1 \cdot \frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta} \] - The \(\sin \theta\) and \(\cos \theta\) also cancel out: \[ 1 \cdot 1 = 1 \] 5. **Final Result**: Therefore, the value of the original expression is: \[ 1 \] ### Conclusion: The final answer is \(1\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

The value of ((sin theta -cos theta )(1+tan theta + cot theta ))/(1+sin theta cos theta ) = ?

What is ((sin theta +cos theta)(tan theta +cot theta))/(sec theta + cosec theta) equal to ?

(2sin theta*cos theta-cos theta)/(1-sin theta+sin^(2)theta-cos^(2)theta)=cot theta

If ((sin theta-cosec theta)(cos theta- sec theta))/(tan^2 theta-sin^2 theta)=r^3 , then r=? यदि ((sin theta-cosec theta)(cos theta- sec theta))/(tan^2 theta-sin^2 theta)=r^3 है, तो r = ?

Prove that: ((1+cot theta+ tan theta)(sin theta-cos theta))/(sec^3 theta-cosec^3 theta)=sin^2 theta cos^2 theta

(cosec theta+sin theta)(cosec theta-sin theta)=cot^(2)theta+cos^(2)theta

Find the value मान ज्ञात करें : (sin theta+cos theta-1)/(sin theta-cos theta+1)xx(tan^2 theta (cosec^2 theta -1))/(sec theta -tan theta )

The value of (sin theta+cos theta-1)/(sin theta -cos theta+1)xx(tan^2 theta(cosec^2 theta-1))/(sec theta-tan theta) is:

Prove that (sin theta)/(sec theta+tan theta-1)+cos theta/(cosec theta+cot theta-1)=1

If tan theta+cot theta=2 then sin theta+cos theta=