Home
Class 14
MATHS
sin^(2)Acot^(2)A+cos^(2)Atan^(2)A=?...

`sin^(2)Acot^(2)A+cos^(2)Atan^(2)A=?`

A

`-1`

B

0

C

3

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2 A \cot^2 A + \cos^2 A \tan^2 A \), we can follow these steps: ### Step 1: Rewrite cotangent and tangent in terms of sine and cosine We know that: \[ \cot A = \frac{\cos A}{\sin A} \quad \text{and} \quad \tan A = \frac{\sin A}{\cos A} \] Thus, we can express \( \cot^2 A \) and \( \tan^2 A \) as: \[ \cot^2 A = \left(\frac{\cos A}{\sin A}\right)^2 = \frac{\cos^2 A}{\sin^2 A} \] \[ \tan^2 A = \left(\frac{\sin A}{\cos A}\right)^2 = \frac{\sin^2 A}{\cos^2 A} \] ### Step 2: Substitute these expressions into the original equation Now substitute \( \cot^2 A \) and \( \tan^2 A \) into the expression: \[ \sin^2 A \cot^2 A + \cos^2 A \tan^2 A = \sin^2 A \left(\frac{\cos^2 A}{\sin^2 A}\right) + \cos^2 A \left(\frac{\sin^2 A}{\cos^2 A}\right) \] ### Step 3: Simplify the expression This simplifies to: \[ \sin^2 A \cdot \frac{\cos^2 A}{\sin^2 A} + \cos^2 A \cdot \frac{\sin^2 A}{\cos^2 A} = \cos^2 A + \sin^2 A \] ### Step 4: Use the Pythagorean identity From the Pythagorean identity, we know that: \[ \sin^2 A + \cos^2 A = 1 \] ### Final Result Thus, we conclude: \[ \sin^2 A \cot^2 A + \cos^2 A \tan^2 A = 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Find the values of the following expression. sin^2Acot^2A+cos^2Atan^2A =?

sin^(2)A cos^(2)B-cos^(2)A sin^(2)B=sin^(2)A-sin^(2)B

(sin^(2)3A)/(sin^(2)A)-(cos^(2)3A)/(cos^(2)A)=

Prove the following identities: (sin^(2)A)/(cos^(2)A)+(cos^(2)A)/(sin^(2)A)=(1)/(sin^(2)A cos^(2)A)-2

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

sin ^ (2) A.cot ^ (2) A-cos ^ (2) A * tan ^ (2) A = 1

Prove the following identities: (sin+cos A)/(sin A-cos A)+(sin-cos A)/(sin A+cos A)=(2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2cos^(2)A)

Prove that (1)sin2A=2sin A cos A(2)cos2A=cos^(2)A-sin^(2)A

Show that: sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A cos^(2)A)