Home
Class 14
MATHS
(3-4sin^(2)theta)/(cos^(2)theta)+tan^(2)...

`(3-4sin^(2)theta)/(cos^(2)theta)+tan^(2)theta` is :

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3 - 4\sin^2\theta)/\cos^2\theta + \tan^2\theta\), we will follow these steps: ### Step 1: Rewrite the expression We start with the given expression: \[ \frac{3 - 4\sin^2\theta}{\cos^2\theta} + \tan^2\theta \] We know that \(\tan^2\theta = \frac{\sin^2\theta}{\cos^2\theta}\). So, we can rewrite the expression as: \[ \frac{3 - 4\sin^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} \] ### Step 2: Combine the fractions Now, we can combine the two fractions over a common denominator: \[ \frac{3 - 4\sin^2\theta + \sin^2\theta}{\cos^2\theta} \] This simplifies to: \[ \frac{3 - 3\sin^2\theta}{\cos^2\theta} \] ### Step 3: Factor out the common term We can factor out the common term in the numerator: \[ \frac{3(1 - \sin^2\theta)}{\cos^2\theta} \] ### Step 4: Use the Pythagorean identity Using the Pythagorean identity \(1 - \sin^2\theta = \cos^2\theta\), we can substitute: \[ \frac{3\cos^2\theta}{\cos^2\theta} \] ### Step 5: Simplify the expression Now, we can simplify the expression: \[ 3 \cdot \frac{\cos^2\theta}{\cos^2\theta} = 3 \] Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

(3-4sin^(2)theta)/(cos^(2)theta)=3-tan^(2)theta

If costheta=(8)/(17) ,verify that (3-4sin^(2)theta)/(4cos^(2)theta-3)=(3-tan^(2)theta)/(1-3tan^(2)theta) .

Find the values of the following expression. (3-4sin^2theta)/cos^2theta+tan^2theta

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

tan^(2)theta-tan^(2)(90^(@)-theta)=(sin^(2)theta-cos^(2)theta)/(sin^(2)theta cos^(2)theta)

(1+2sin theta+sin^(2)theta)/(cos^(2)theta)=(sec theta+tan theta)/(sec theta-tan theta)

If tan theta=4 then ((tan theta)/((sin^(3)theta)/(cos theta)+sin theta cos theta)) is equal to

If tan theta=(12)/(13) then value of (2sin theta cos theta)/(cos^(2)theta-sin^(2)theta) is