Home
Class 14
MATHS
If A is in the fourth quadrant and cosA=...

If A is in the fourth quadrant and `cosA=(5)/(13)`, find the value of `(13sinA+5secA)/(5tanA+6" cosec A")`:

A

`-2//37`

B

`-3//27`

C

`2//37`

D

can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the trigonometric identities and properties of angles in the fourth quadrant. ### Step 1: Identify the values of sin A and sec A Given that \( \cos A = \frac{5}{13} \), we know that in the fourth quadrant, cosine is positive and sine is negative. We can use the Pythagorean identity: \[ \sin^2 A + \cos^2 A = 1 \] Substituting the value of \( \cos A \): \[ \sin^2 A + \left(\frac{5}{13}\right)^2 = 1 \] Calculating \( \left(\frac{5}{13}\right)^2 \): \[ \sin^2 A + \frac{25}{169} = 1 \] Subtracting \( \frac{25}{169} \) from both sides: \[ \sin^2 A = 1 - \frac{25}{169} = \frac{169 - 25}{169} = \frac{144}{169} \] Taking the square root (and considering that sine is negative in the fourth quadrant): \[ \sin A = -\frac{12}{13} \] Now, we can find \( \sec A \): \[ \sec A = \frac{1}{\cos A} = \frac{1}{\frac{5}{13}} = \frac{13}{5} \] ### Step 2: Substitute values into the expression We need to evaluate: \[ \frac{13 \sin A + 5 \sec A}{5 \tan A + 6 \csc A} \] Substituting \( \sin A \) and \( \sec A \): \[ = \frac{13 \left(-\frac{12}{13}\right) + 5 \left(\frac{13}{5}\right)}{5 \tan A + 6 \csc A} \] Calculating the numerator: \[ = \frac{-12 + 13}{5 \tan A + 6 \csc A} = \frac{1}{5 \tan A + 6 \csc A} \] ### Step 3: Find \( \tan A \) and \( \csc A \) We already have \( \sin A \) and \( \cos A \): \[ \tan A = \frac{\sin A}{\cos A} = \frac{-\frac{12}{13}}{\frac{5}{13}} = -\frac{12}{5} \] And \( \csc A \): \[ \csc A = \frac{1}{\sin A} = \frac{1}{-\frac{12}{13}} = -\frac{13}{12} \] ### Step 4: Substitute \( \tan A \) and \( \csc A \) into the denominator Now substituting these values into the denominator: \[ = 5 \left(-\frac{12}{5}\right) + 6 \left(-\frac{13}{12}\right) \] Calculating the denominator: \[ = -12 - \frac{78}{12} = -12 - 6.5 = -18.5 = -\frac{37}{2} \] ### Step 5: Final expression Now substituting back into the expression: \[ = \frac{1}{-\frac{37}{2}} = -\frac{2}{37} \] Thus, the final answer is: \[ \boxed{-\frac{2}{37}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If theta lies in the fourth quadrant and cos=(5)/(13) ,find the value of: (i) "sin" theta and "tan" theta (ii) (13 sin theta+5 sec theta)/(5 tan theta+6 "cosec"theta)

If cosA=(5)/(13) then what is the value of (sinA-cotA)/(2tanA) ?

If cosA = 5/13 , find the value of tan A + cot A

If sin A=(5)/(13) , then the value of secA is :

Find the value of (tanA+secA-1)cosA .

If sinA+cosA=(3)/(5) , then find the value of sinA-cosA .

If cosec A =(13)/(12) then find the value of (2 sin A-3 cos A)/(4 sin A-9 cosA)

If A lies in the third quadrant, and 20tanA = 21, then the value of (5 sin A-2 cos A)/(4cosA-5/7 sinA) is: यदि A तीसरे चतुर्थाश में स्थित है तथा 20tanA= 21 है, तो (5 sin A-2 cos A)/(4cosA-5/7 sinA) का मान क्या होगा ?