Home
Class 14
MATHS
Find the value of, (4)/(3)cot^(2)30^(@...

Find the value of,
`(4)/(3)cot^(2)30^(@)+3sin^(2)60^(@)-2" cosec"^(2)60^(@)-(3)/(4)tan^(2)30^(@)`:

A

`10//3`

B

`11//3`

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \frac{4}{3} \cot^2 30^\circ + 3 \sin^2 60^\circ - 2 \csc^2 60^\circ - \frac{3}{4} \tan^2 30^\circ, \] we will evaluate each trigonometric function involved step by step. ### Step 1: Calculate \(\cot^2 30^\circ\) We know that \[ \cot 30^\circ = \frac{1}{\tan 30^\circ} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3}. \] Thus, \[ \cot^2 30^\circ = (\sqrt{3})^2 = 3. \] ### Step 2: Calculate \(\sin^2 60^\circ\) We know that \[ \sin 60^\circ = \frac{\sqrt{3}}{2}. \] Thus, \[ \sin^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}. \] ### Step 3: Calculate \(\csc^2 60^\circ\) We know that \[ \csc 60^\circ = \frac{1}{\sin 60^\circ} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}. \] Thus, \[ \csc^2 60^\circ = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3}. \] ### Step 4: Calculate \(\tan^2 30^\circ\) We know that \[ \tan 30^\circ = \frac{1}{\sqrt{3}}. \] Thus, \[ \tan^2 30^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}. \] ### Step 5: Substitute the values into the expression Now, substituting these values back into the original expression: \[ \frac{4}{3} \cdot 3 + 3 \cdot \frac{3}{4} - 2 \cdot \frac{4}{3} - \frac{3}{4} \cdot \frac{1}{3}. \] ### Step 6: Simplify each term 1. \(\frac{4}{3} \cdot 3 = 4\) 2. \(3 \cdot \frac{3}{4} = \frac{9}{4}\) 3. \(-2 \cdot \frac{4}{3} = -\frac{8}{3}\) 4. \(-\frac{3}{4} \cdot \frac{1}{3} = -\frac{1}{4}\) ### Step 7: Combine all the terms Now, we combine all the terms: \[ 4 + \frac{9}{4} - \frac{8}{3} - \frac{1}{4}. \] ### Step 8: Find a common denominator The common denominator for \(4\), \(\frac{9}{4}\), \(-\frac{8}{3}\), and \(-\frac{1}{4}\) is \(12\). 1. Convert \(4\) to a fraction: \(4 = \frac{48}{12}\) 2. Convert \(\frac{9}{4}\) to a fraction: \(\frac{9}{4} = \frac{27}{12}\) 3. Convert \(-\frac{8}{3}\) to a fraction: \(-\frac{8}{3} = -\frac{32}{12}\) 4. Convert \(-\frac{1}{4}\) to a fraction: \(-\frac{1}{4} = -\frac{3}{12}\) Now, substituting these values: \[ \frac{48}{12} + \frac{27}{12} - \frac{32}{12} - \frac{3}{12} = \frac{48 + 27 - 32 - 3}{12} = \frac{40}{12} = \frac{10}{3}. \] ### Final Answer Thus, the value of the expression is \[ \frac{10}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Prove that : (4)/(3) tan ^(2) 30^(@) + sin ^(2) 60^(@) - 3 cos ^(2) 60^(@) + (3)/(4) tan^(2) 60^(@) - 2 tan^(2) 45^(@) = (25)/(36)

Find the value of cosec^(2)30^(@)sin^(2)45^(@)-sec^(2)60^(@)

Find the value of 5tan^(2)30^@+4cos^(2)45^@-sin^(2)60^@+1

The numerical value of (4)/(3) cot^(2)30^(@)-2csc^(2)60^(@)-(3)/(4) tan^(2)30^(@)= A) 11//16 B) 16//11 C) 13//12 D) 6//11

(2)/(3)(cos^(4)30^(@)-sin^(4)45^(@))-3(sin^(2)60^(@)-sec^(2)45^(@))+(1)/(4)cot^(2)30^(@)

Evaluate : 3 cos^(2)60^(@)sec^(2)30^(@)-2 sin^(2)30^(@)tan^(2)60^(@)

cos^(2)0^@-2cot^(2)30^(@)+3cosec^(2)90^(@)=2(sec^(2)45^(@)-tan^(2)60)

Find the value of sin^(2)30^(@)+cos^(2)60^(@)+tan45^(@) .

Evaluate: (2)/(3)(cos^(4)30^(@)-sin^(4)45^(@))-3(sin^(2)60^(@)-sec^(2)45^(@))+(1)/(4)cot^(2)30^(@)