Home
Class 14
MATHS
Find the value of sqrt((1+cos theta)/(1-...

Find the value of `sqrt((1+cos theta)/(1-cos theta))+sqrt((1-cos theta)/(1+cos theta))`

A

`2 sec theta`

B

`sec theta`

C

`"2 cosec "theta`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{\frac{1+\cos \theta}{1-\cos \theta}} + \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x = \sqrt{\frac{1+\cos \theta}{1-\cos \theta}} + \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} \] ### Step 2: Combine the terms under a common denominator To combine the two square root terms, we can express them with a common denominator: \[ x = \frac{\sqrt{(1+\cos \theta)^2} + \sqrt{(1-\cos \theta)^2}}{\sqrt{(1-\cos \theta)(1+\cos \theta)}} \] ### Step 3: Simplify the numerator The numerator simplifies to: \[ \sqrt{(1+\cos \theta)^2} + \sqrt{(1-\cos \theta)^2} = (1+\cos \theta) + (1-\cos \theta) = 2 \] ### Step 4: Simplify the denominator The denominator simplifies as follows: \[ \sqrt{(1-\cos \theta)(1+\cos \theta)} = \sqrt{1 - \cos^2 \theta} = \sqrt{\sin^2 \theta} = |\sin \theta| \] Since we are considering angles where \( \sin \theta \) is non-negative, we can write: \[ \sqrt{\sin^2 \theta} = \sin \theta \] ### Step 5: Combine results Now we can substitute back into our expression: \[ x = \frac{2}{\sin \theta} \] ### Step 6: Final expression Thus, we can express \( x \) as: \[ x = 2 \cdot \csc \theta \] ### Conclusion The final value of the expression is: \[ \sqrt{\frac{1+\cos \theta}{1-\cos \theta}} + \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} = 2 \cdot \csc \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Prove each of the following identities : (i) sqrt((1+ sin theta)/(1- sin theta)) = ( sec theta + tan theta) (ii) sqrt((1- cos theta)/(1+ cos theta))= ("cosec" theta - cot theta) (iii) sqrt((1+ cos theta)/(1- cos theta))+ sqrt((1- cos theta)/(1+ cos theta)) = 2 "cosec" theta

Evaluate sqrt((1-cos theta)/(1+costheta))

root(7)((1+cos theta)/(1-cos theta))+sqrt((1-cos theta)/(1+cos theta))=2cos ec theta

sqrt((1+cos theta)/(1-cos theta))=csc theta+cot theta

cos ec theta sqrt(1-cos^(2)theta)=1

sintheta=7/25 then sqrt((1-cos theta)/(1+cos theta))=

The value of sqrt((1+cos theta)/(1-cos theta)) is (a) cot theta-cos ec theta(b)cos ec theta+cot theta(c)cos ec^(2)theta+cot^(2)theta(d)(cot theta+cos ec theta)^(2)

If sqrt((1-cos theta)/(1+cos theta)) xx sqrt((cosec theta-cot theta)/(cosec theta+cot theta))= (1-r)/(1+r) , then the value of r is: यदि sqrt((1-cos theta)/(1+cos theta)) xx sqrt((cosec theta-cot theta)/(cosec theta+cot theta))= (1-r)/(1+r) है, तो r का मान ज्ञात करें |

If cot theta=(7)/(8) then find the value ((1-sin theta)(1+sin theta))/((1-cos theta)(1+cos theta))

Prove that :sqrt((1+cos theta)/(1-cos theta))=cos ec theta+cot theta