Home
Class 14
MATHS
tantheta+cot theta=2:...

`tantheta+cot theta=2`:

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \cot \theta = 2 \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( \cot \theta = \frac{1}{\tan \theta} \). Therefore, we can rewrite the equation as: \[ \tan \theta + \frac{1}{\tan \theta} = 2 \] ### Step 2: Let \( x = \tan \theta \) Substituting \( x \) for \( \tan \theta \), we have: \[ x + \frac{1}{x} = 2 \] ### Step 3: Multiply through by \( x \) To eliminate the fraction, multiply both sides by \( x \) (assuming \( x \neq 0 \)): \[ x^2 + 1 = 2x \] ### Step 4: Rearrange the equation Rearranging gives us a standard quadratic equation: \[ x^2 - 2x + 1 = 0 \] ### Step 5: Factor the quadratic This can be factored as: \[ (x - 1)^2 = 0 \] ### Step 6: Solve for \( x \) Setting the factor to zero gives: \[ x - 1 = 0 \implies x = 1 \] ### Step 7: Substitute back for \( \tan \theta \) Since \( x = \tan \theta \), we have: \[ \tan \theta = 1 \] ### Step 8: Find the angle \( \theta \) The angle \( \theta \) for which \( \tan \theta = 1 \) is: \[ \theta = 45^\circ \] ### Conclusion Thus, the solution to the equation \( \tan \theta + \cot \theta = 2 \) is: \[ \theta = 45^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If tantheta - cot theta =a and cos theta - sin theta =b , then value of (a^(2) + 4) (b^(2) -1)^(2) is:

If sintheta + costheta = sqrt(3) , then prove that tantheta + cot theta =1 .

If tan theta+cot theta=2," then "tan^(2)theta+cot^(2)theta=

If tan theta + cot theta = 2 then the value of tan^2 theta + cot^2 theta is

If tan theta + cot theta =2, " then " tan^(2) theta + cot^(2) theta is equal to

if tan theta+cot theta=2 then tan^(2)theta-cot^(2)theta=

If tan theta+cot theta=2, find the value of tan^(2)theta+cot^(2)theta

If tantheta+cottheta=2 then find the value of tan^(2)theta+cot^(2)theta .

Eliminate theta "from the equation" m= tantheta +cottheta and n= tan theta - cot theta .

If sintheta + cos theta = (1+ sqrt(3))/2 , where 0 lt theta lt pi/2 , then what is tantheta + cot theta equal to ?