Home
Class 14
MATHS
2sin^(2)theta+4cos^(2)theta=3:...

`2sin^(2)theta+4cos^(2)theta=3`:

A

`30^(@)`

B

`60^(@)`

C

`45^(@)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2\sin^2\theta + 4\cos^2\theta = 3\), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 2\sin^2\theta + 4\cos^2\theta = 3 \] ### Step 2: Factor out the common term Notice that we can factor out a 2 from the left-hand side: \[ 2(\sin^2\theta + 2\cos^2\theta) = 3 \] ### Step 3: Divide both sides by 2 Now, divide both sides of the equation by 2: \[ \sin^2\theta + 2\cos^2\theta = \frac{3}{2} \] ### Step 4: Use the Pythagorean identity We know that \(\sin^2\theta + \cos^2\theta = 1\). We can express \(\sin^2\theta\) in terms of \(\cos^2\theta\): \[ \sin^2\theta = 1 - \cos^2\theta \] Substituting this into the equation gives: \[ (1 - \cos^2\theta) + 2\cos^2\theta = \frac{3}{2} \] ### Step 5: Simplify the equation Now simplify the equation: \[ 1 - \cos^2\theta + 2\cos^2\theta = \frac{3}{2} \] This simplifies to: \[ 1 + \cos^2\theta = \frac{3}{2} \] ### Step 6: Isolate \(\cos^2\theta\) Subtract 1 from both sides: \[ \cos^2\theta = \frac{3}{2} - 1 = \frac{1}{2} \] ### Step 7: Solve for \(\cos\theta\) Taking the square root of both sides gives: \[ \cos\theta = \pm\frac{1}{\sqrt{2}} = \pm\frac{\sqrt{2}}{2} \] ### Step 8: Determine the angles The angles for which \(\cos\theta = \frac{\sqrt{2}}{2}\) are: \[ \theta = 45^\circ \quad \text{and} \quad \theta = 315^\circ \] The angle for which \(\cos\theta = -\frac{\sqrt{2}}{2}\) are: \[ \theta = 135^\circ \quad \text{and} \quad \theta = 225^\circ \] ### Step 9: Check the options From the options given (30°, 60°, 45°, none of these), the only angle that matches is: \[ \theta = 45^\circ \] ### Final Answer Thus, the solution to the equation \(2\sin^2\theta + 4\cos^2\theta = 3\) is: \[ \theta = 45^\circ \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

(sin ^ (4) theta + cos ^ (4) theta) / (1-2sin ^ (2) theta cos ^ (2) theta) = 1

For the every theta,0ltthetale90 , find the values of the following angle 2sin^2theta+4cos^2theta=3

The sum of all values of theta in (0,pi/2) satisfying sin^(2)2theta+cos^(4)2theta=3/4 is

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

If cos^(2)theta+2sin^(2)theta+3cos^(2)theta+4sin^(2)theta+......20terms=10025 and theta is an acute angle then the value of sin theta-cos theta is

If 5sin^(2)theta+3cos^(2)theta=4 . Find the value of sin theta and cos theta :

If sin^(2)theta+2cos^(2)theta+3sin^(2)theta+4cos^(2)theta+......+40 terms =405 where theta is acute,then find the value of tan theta