Home
Class 14
MATHS
(sin2A)/(1+cos 2A) is...

`(sin2A)/(1+cos 2A)` is

A

`tan2A`

B

`cos 2A`

C

`tanA`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin 2A}{1 + \cos 2A}\), we can use trigonometric identities. Here’s a step-by-step solution: ### Step 1: Use the double angle identity for sine We know that: \[ \sin 2A = 2 \sin A \cos A \] So we can rewrite the numerator: \[ \sin 2A = 2 \sin A \cos A \] ### Step 2: Use the double angle identity for cosine We also know that: \[ \cos 2A = 2 \cos^2 A - 1 \] Thus, we can express \(1 + \cos 2A\) as: \[ 1 + \cos 2A = 1 + (2 \cos^2 A - 1) = 2 \cos^2 A \] ### Step 3: Substitute the identities into the expression Now we can substitute these identities into our original expression: \[ \frac{\sin 2A}{1 + \cos 2A} = \frac{2 \sin A \cos A}{2 \cos^2 A} \] ### Step 4: Simplify the expression We can simplify the fraction: \[ \frac{2 \sin A \cos A}{2 \cos^2 A} = \frac{\sin A}{\cos A} \] ### Step 5: Recognize the final expression The expression \(\frac{\sin A}{\cos A}\) is the definition of the tangent function: \[ \frac{\sin A}{\cos A} = \tan A \] ### Final Result Thus, we conclude that: \[ \frac{\sin 2A}{1 + \cos 2A} = \tan A \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.6|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

(sin 2A)/( 1+ cos 2A) . (cos A)/( 1+ cos A)=

The value of (Sin 2A)/(1 - cos 2 A) is

(sin 2x)/(1+cos 2x) =

(sin2A)/(1+cos2A)*(cos A)/(1+cos A)=

(sin 2x)/(1- cos 2x ) = cot x

find the value of expression (sin2x)/(1+cos2x) is:

The value of tan^(-1)((sin2-1)/(cos2)) is

prove that (sin2A)/(1-cos2A)=cot A

Prove that (sin2A)/(1+cos2A)=tan A