Home
Class 14
MATHS
cos^(4)theta-sin^(4)theta is :...

`cos^(4)theta-sin^(4)theta` is :

A

`cos 2 theta`

B

`sin2 theta`

C

`tan2theta`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^4 \theta - \sin^4 \theta \), we can use the difference of squares identity. Here’s the step-by-step solution: ### Step 1: Recognize the Difference of Squares The expression \( \cos^4 \theta - \sin^4 \theta \) can be recognized as a difference of squares. We can rewrite it as: \[ \cos^4 \theta - \sin^4 \theta = (\cos^2 \theta)^2 - (\sin^2 \theta)^2 \] ### Step 2: Apply the Difference of Squares Formula Using the difference of squares formula \( A^2 - B^2 = (A - B)(A + B) \), where \( A = \cos^2 \theta \) and \( B = \sin^2 \theta \), we can factor the expression: \[ \cos^4 \theta - \sin^4 \theta = (\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta) \] ### Step 3: Simplify Using Trigonometric Identities We know from the Pythagorean identity that: \[ \cos^2 \theta + \sin^2 \theta = 1 \] Substituting this into our expression gives: \[ \cos^4 \theta - \sin^4 \theta = (\cos^2 \theta - \sin^2 \theta)(1) \] Thus, we have: \[ \cos^4 \theta - \sin^4 \theta = \cos^2 \theta - \sin^2 \theta \] ### Step 4: Further Simplification The expression \( \cos^2 \theta - \sin^2 \theta \) can be rewritten using the double angle formula: \[ \cos^2 \theta - \sin^2 \theta = \cos(2\theta) \] ### Final Result Therefore, the expression \( \cos^4 \theta - \sin^4 \theta \) simplifies to: \[ \cos^4 \theta - \sin^4 \theta = \cos(2\theta) \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.6|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

find the value of the following expression cos^4theta-sin^4theta is :

What is the simplified form of cos^(4)theta- sin^(4) theta in terms of sin theta

Solve cos^(4)theta-sin^(4)theta=cos^2theta

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

The sum of values of theta satisfying the equation 1+cos^(4)theta=sin^(4)theta ; theta in[0,2 pi] ,is

If cos^(4)theta-sin^(4)theta=(2)/(13) , find cos^(2)theta-sin^(2)theta+1 .

If cos^(4)theta-sin^(4)theta=(2)/(3) , then the value of 1-2sin^(2)theta is

If cos^(4)theta-sin^(4)theta=(2)/(3) , then the value of 2cos^(2)theta-1 is