Home
Class 14
MATHS
If 2 cos theta=x+(1)/(x), find the value...

If `2 cos theta=x+(1)/(x)`, find the value of `2cos 3 theta`

A

`x^(3)+(1)/(x^(3))`

B

`x^(2)+(1)/(x^(2))`

C

`x^(3)-(1)/(x^(3))`

D

`sqrt(x+(1)/(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ 2 \cos \theta = x + \frac{1}{x} \] We need to find the value of \(2 \cos 3\theta\). We can use the triple angle formula for cosine, which states: \[ \cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta \] Thus, we can express \(2 \cos 3\theta\) as: \[ 2 \cos 3\theta = 2(4 \cos^3 \theta - 3 \cos \theta) \] This simplifies to: \[ 2 \cos 3\theta = 8 \cos^3 \theta - 6 \cos \theta \] Next, we need to express \(\cos \theta\) in terms of \(x\). From the first equation, we can solve for \(\cos \theta\): \[ \cos \theta = \frac{x + \frac{1}{x}}{2} \] Now, we will substitute this expression into the equation for \(2 \cos 3\theta\): 1. First, calculate \(\cos^3 \theta\): \[ \cos^3 \theta = \left(\frac{x + \frac{1}{x}}{2}\right)^3 = \frac{(x + \frac{1}{x})^3}{8} \] 2. Expanding \((x + \frac{1}{x})^3\) using the binomial theorem: \[ (x + \frac{1}{x})^3 = x^3 + 3x^2 \cdot \frac{1}{x} + 3x \cdot \frac{1}{x^2} + \frac{1}{x^3} = x^3 + 3x + 3\frac{1}{x} + \frac{1}{x^3} \] 3. Thus, we have: \[ \cos^3 \theta = \frac{x^3 + 3x + 3\frac{1}{x} + \frac{1}{x^3}}{8} \] 4. Now substituting this into the equation for \(2 \cos 3\theta\): \[ 2 \cos 3\theta = 8 \left(\frac{x^3 + 3x + 3\frac{1}{x} + \frac{1}{x^3}}{8}\right) - 6 \left(\frac{x + \frac{1}{x}}{2}\right) \] 5. Simplifying this gives: \[ 2 \cos 3\theta = x^3 + 3x + 3\frac{1}{x} + \frac{1}{x^3} - 3(x + \frac{1}{x}) \] 6. Further simplifying: \[ 2 \cos 3\theta = x^3 + 3x + 3\frac{1}{x} + \frac{1}{x^3} - 3x - 3\frac{1}{x} \] 7. This simplifies to: \[ 2 \cos 3\theta = x^3 - 3x + \frac{1}{x^3} - 3\frac{1}{x} \] Thus, we have found the value of \(2 \cos 3\theta\) in terms of \(x\): \[ 2 \cos 3\theta = x^3 - 3x + \frac{1}{x^3} - 3\frac{1}{x} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.6|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If cos theta = 1/2 (a+(1)/(a)), then the value of cos 3 theta is

If cos ec theta=(13)/(12), find the value of (2sin theta-3cos theta)/(4sin theta-9cos theta)

If cos theta =1/2 (x+1/x) , what is the value of cos 2 theta ?

If cot theta=(1)/(sqrt(3)), find the value of (1-cos^(2)theta)/(2-sin^(2)theta)

If tan theta = (3)/(4) , find the value of ((1 - cos^(2) theta)/(1 + cos^(2) theta))

If cot theta=sqrt(3), find the value of (cos ec^(2)theta+cot^(2)theta)/(cos ec^(2)theta-sec^(2)theta)

If tan theta=(4)/(3), find the value of (5sin theta+2cos theta)/(3sin theta-cos theta)

If 0^(@)

If 3cot theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)