Home
Class 14
MATHS
Find the value of tanA+tanB+tanC, if A+B...

Find the value of `tanA+tanB+tanC`, if `A+B+C=pi`:

A

`tanAtanB tanC`

B

1

C

0

D

`cotAcotB cotC`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan A + \tan B + \tan C \) given that \( A + B + C = \pi \), we can use the trigonometric identity involving the tangent of angles. ### Step-by-Step Solution: 1. **Use the identity for tangent of a sum**: Since \( A + B + C = \pi \), we can express \( C \) as \( C = \pi - (A + B) \). 2. **Apply the tangent function**: We know that: \[ \tan C = \tan(\pi - (A + B)) = -\tan(A + B) \] 3. **Use the tangent addition formula**: The tangent of a sum can be expressed as: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Thus, we can rewrite \( \tan C \): \[ \tan C = -\frac{\tan A + \tan B}{1 - \tan A \tan B} \] 4. **Substituting back**: Now substituting \( \tan C \) back into our expression for \( \tan A + \tan B + \tan C \): \[ \tan A + \tan B + \tan C = \tan A + \tan B - \frac{\tan A + \tan B}{1 - \tan A \tan B} \] 5. **Combine the terms**: Let \( x = \tan A + \tan B \). Then we have: \[ x - \frac{x}{1 - \tan A \tan B} \] To combine these, we can find a common denominator: \[ = \frac{x(1 - \tan A \tan B) - x}{1 - \tan A \tan B} \] \[ = \frac{x - x + x \tan A \tan B}{1 - \tan A \tan B} \] \[ = \frac{x \tan A \tan B}{1 - \tan A \tan B} \] 6. **Final equation**: Therefore, we have: \[ \tan A + \tan B + \tan C = \tan A \tan B \tan C \] This implies: \[ \tan A + \tan B + \tan C = \tan A \tan B \tan C \] ### Conclusion: Thus, the value of \( \tan A + \tan B + \tan C \) is equal to \( \tan A \tan B \tan C \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.6|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If A+B=45^(@) , find the valueof tanA+tanB+tanA tanB :

If A+B=45^(@) , then find the value of tanA+tanB+tanA tanB .

If cosA=(3)/(5) and sinB=(5)/(13) , find the value of (tanA+tanB)/(1-tanAtanB) :

In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of tanA ,tanB ,tanC are, respectively (a)1,2,3 (b) 3,2//3,7//3 (c)4,1//2 ,3//2 (d) none of these

tanA +tanB + tanC = tanA tanB tanC if

If ABC D is a cyclic quadrilateral, then find the value of sinA+sinB-sinC-sinD If A+B+C=(pi)/(2) , then find the value of tanA tanB+tanBtanC+tanC tanA

If A and B are supplementary angles then find the value of (tanA+tanB)/(1-tanAtanB)

If A+B =45^@ , then the value of 2(1+ tanA)(1+ tanB) is: यदि A+B =45^@ है, तो 2(1+ tanA)(1+ tanB) का मान होगा :