Home
Class 12
MATHS
" Value of "x" satisfying "6(log(x)2-log...

" Value of "x" satisfying "6(log_(x)2-log_(4)x)+7=0" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve :6(log_(x)2-log_(4)x)+7=0

Solve 6(log_x2-log_4x)+7 = 0 .

The value of x satisfying log_(243) x=0.8 is:

The value of x satisfying |x-1|^(log_(3)x^(2)-2log_(x)9)=(x-1)^(7) is

The value of x satisfying log_(3)4 -2 log_(3)sqrt(3x +1) =1 - log_(3)(5x -2)

The number of values of x satisfying 3^((log_(3)x)^(2))=2^((log_(2)x)^(2)) is equal to

4.The value of x, satisfying 3^(4log_(9)(x+1))=2^(2log_(2)x)+3

Value of x, satisfying (6)/(5)a^(log_(a)(x))*(log_(10)(a)*log_(a)(5))-3^(log_(10)((x)/(10)))=9^(log_(100)(x)+log_(4)(2)) is :

Solve : 6(log_x2-(log_4x)+7=0.

Sum of values of x and y satisfying log_(x)(log_(3)(log_(x)y))=0 and log_(y)27=1 is :