Home
Class 8
MATHS
" If "x>-c" then the minimum value of "(...

" If "x>-c" then the minimum value of "((a+x)(b+x))/(c+x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

IF x gt -c then the minimum value of (( a+x) (b +x))/( c+x) is

The minimum value of (x-a)(x-b) is

The minimum value of (x-a)(x-b) is

Prove that for x> -c , the minimum value of f(x) = (a+x) (b+x)/(c+x) is 2sqrt((c-a)(c-b)) + a + b - 2c , given (c-a) (c-b) > 0 .

Prove that the minimum value of ((a+x)(b+x))/((c+x))a,b>c,x>-c is (sqrt(a-c)+sqrt(b-c))^(2)

Prove that the minimum value of ((a+x)(b+x))/((c+x)), x gt - c is [sqrt(a-c)+sqrt(b-c)]^(2) .

Prove that the minimum value of ((a+x)(b+x))/((c+x))a ,b > c ,x >-c is (sqrt(a-c)+sqrt(b-c))^2

Prove that the minimum value of ((a+x)(b+x))/((c+x))a ,b > c ,x > -c is (sqrt(a-c)+sqrt(b-c))^2

Prove that the minimum value of ((a+x)(b+x))/((c+x))a ,b > c ,x >-c is (sqrt(a-c)+sqrt(b-c))^2